Disjoint-Set Forests

Walter Guttmann

October 5, 2019

Abstract
We give a simple relation-algebraic semantics of read and write operations on associative arrays. The array operations seamlessly integrate with assignments in the Isabelle/HOL Hoare-logic library. We verify the correctness of an array-based implementation of disjoint-set forests with a naive union operation and a find operation with path compression.

Contents

1 Relation-Algebraic Semantics of Associative Array Access 2

2 Relation-Algebraic Semantics of Disjoint-Set Forests 4

3 Verifying Operations on Disjoint-Set Forests 13
 3.1 Make-set ... 14
 3.2 Find-set ... 14
 3.3 Path Compression 18
 3.4 Find-set with Path Compression 29
 3.5 Union-sets .. 31

This theory has been developed with Isabelle2019.

theory Disjoint-Set-Forests

begin

no-notation trancl ((+) [1000] 999)

context stone-relation-algebra
begin
An arc in a Stone relation algebra corresponds to an atom in a relation algebra.

lemma points-arc:
point \(x \Rightarrow point \ y \Rightarrow arc \ (x \ast y^T) \)
by (metis comp-associative cone-dist-comp conv-involutive equivalence-top-closed)

lemma point-arc:
point \(x \Rightarrow arc \ (x \ast x^T) \)
by (simp add: points-arc)

lemma injective-codomain:
assumes injective \(x \)
shows \(x \ast (x \land 1) = x \land 1 \)
proof (rule antisym)
show \(x \land 1 \leq x \land 1 \)
by (metis assms comp-right-one dual-order.trans inf.boundedI inf.cobounded1 inf.sup-monoid.add-commute mult-right-isotone one-inf-conv)
next
show \(x \land 1 \leq x \ast (x \land 1) \)
by (metis coreflexive-idempotent inf.cobounded1 inf.cobounded2 mult-left-isotone)
qed

1 Relation-Algebraic Semantics of Associative Array Access

abbreviation rel-update :: \('a \Rightarrow 'a \Rightarrow 'a \Rightarrow 'a \) \([70, 65, 65] 61\)
where \(x[y \mapsto z] \equiv (y \land z^T) \sqcup (\neg y \land x) \)

abbreviation rel-access :: \('a \Rightarrow 'a \Rightarrow 'a \) \([70, 65, 65] 65\)
where \(x[[y]] \equiv x^T \ast y \)

Theorem 1.1

lemma update-univalent:
assumes univalent \(x \)
and vector \(y \)
and injective \(z \)
shows univalent \((x[y \mapsto z]) \)
proof
−
have 1: univalent \((y \land z^T) \)
using assms(3) inf-commute univalent-inf-closed by force
have \((y \land z^T)^T \ast (\neg y \land x) = (y^T \land z) \ast (\neg y \land x) \)
by (simp add: conv-dist-inf)
also have \(... = z \ast (y \land \neg y \land x) \)
by (metis assms(2) covector-inf-comp-3 inf.sup-monoid.add-assoc inf.sup-monoid.add-commute)
finally have 2: \((y \land z^T)^T \ast (\neg y \land x) = bot \)

2
by simp
have 3: \(-y\) using assms(2) vector-complement-closed by simp
have \((-y \cap x)^T * (y \cap z^T) = (-y^T \cap x^T) * (y \cap z^T)\)
 by (simp add: conv-complement conv-dist-inf)
also have \(... = x^T * (-y \cap y \cap z^T)\)
 using 3 by (metis (mono-tags, hide-lams) conv-complement covector-inf-comp-3 inf.sup-monoid.add-conv inf.sup-monoid.add-commute)
finally have 4: \((-y \cap x)^T * (y \cap z^T) = bot\)
 by simp
have 5: univalent \((-y \cap x)\)
 using assms(1) inf-commute univalent-inf-closed by fastforce
have \((x[y\mapsto z])^T * (x[y\mapsto z]) = (y \cap z^T)^T * (x[y\mapsto z]) \sqcup (-y \cap x)^T * \(x[y\mapsto z]\)\)
 by (simp add: conv-dist-sup mult-right-dist-sup)
also have \(... = (y \cap z^T)^T * (y \cap z^T) \sqcup (y \cap z^T)^T * (-y \cap x)^T * \(y \cap z^T\) \sqcup (-y \cap x)^T * (y \cap z^T)\)
 by (simp add: mult-left-dist-sup sup-assoc)
finally show \(?thesis\)
 using 1 2 4 5 by simp
qed

Theorem 1.2

lemma update-total:
 assumes total x
 and vector y
 and regular y
 and surjective z
 shows total \((x[y\mapsto z])\)
proof
 have \((x[y\mapsto z]) \times top = x \times top[y\mapsto top]z\)
 by (simp add: assms(2) semiring.distrib-right vector-complement-closed vector-inf-comp conv-dist-comp)
 also have \(... = top[y\mapsto top]\)
 using assms(1) assms(4) by simp
 also have \(... = top\)
 using assms(3) regular-complement-top by auto
finally show \(?thesis\)
 by simp
qed

Theorem 1.3

lemma update-mapping:
 assumes mapping x
 and vector y
 and regular y
 and bijective z
 shows mapping \((x[y\mapsto z])\)
using assms update-univalent update-total by simp

3
Theorem 1.4

lemma read-injective:
assumes injective y
and univalent x
shows injective (x[[y]])
using assms injective-mult-closed univalent-conv-injective by blast

Theorem 1.5

lemma read-surjective:
assumes surjective y
and total x
shows surjective (x[[y]])
using assms surjective-mult-closed total-conv-surjective by blast

Theorem 1.6

lemma read-bijective:
assumes bijective y
and mapping x
shows bijective (x[[y]])
by (simp add: assms read-injective read-surjective)

Theorem 1.7

lemma read-point:
assumes point p
and mapping x
shows point (x[[p]])
using assms comp-associative read-injective read-surjective by auto

end

2 Relation-Algebraic Semantics of Disjoint-Set Forests

context stone-kleene-relation-algebra
begin

lemma equivalence-star-closed:
equivalence x \implies equivalence (x^*)
by (simp add: conv-star-commute star.circ-reflexive star.circ-transitive-equal)

lemma equivalence-plus-closed:
equivalence x \implies equivalence (x^+)
by (simp add: conv-star-commute star.circ-reflexive star.circ-sup-one-left-unfold star.circ-transitive-equal)

lemma reachable-without-loops:
x^* = (x \cap -1)^*
proof (rule antisym)
have $x \ast (x \sqcap -1)^* = (x \sqcap 1) \ast (x \sqcap -1)^* \sqcup (x \sqcap -1) \ast (x \sqcap -1)^*$
 by (metis maddux-3-11-pp mult-right-dist-sup regular-one-closed)
also have $\ldots \leq (x \sqcap -1)^*$
 by (metis inf.cobounded2 le-supI mult-left-isotone star.circ-circ-mult star.left-plus-below-circ star-involutive star-one)
finally show $x^* \leq (x \sqcap -1)^*$
 by (metis inf.cobounded2 maddux-3-11-pp regular-one-closed star.circ-circ-mult star.circ-sup-2 star-involutive star-sub-one)
next
 show $(x \sqcap -1)^* \leq x^*$
 by (simp add: star-isotone)
qed

lemma star-plus-loops:
 $x^* \sqcup 1 = x^+ \sqcup 1$
using star.circ-plus-one star-left-unfold-equal sup-commute by auto

lemma star-plus-without-loops:
 $x^* \sqcap -1 = x^+ \sqcap -1$
by (metis maddux-3-13 star-left-unfold-equal)

Theorem 4.2

lemma omit-redundant-points:
 assumes point p
 shows $p \sqcap x^* = (p \sqcap 1) \sqcup (p \sqcap x) \ast (\neg p \sqcap x)^*$
proof (rule antisym)
 let $?p = p \sqcap 1$
 have $?p \ast x \ast (\neg p \sqcap x)^* \ast ?p \leq ?p \ast \top \ast ?p$
 by (metis comp-associative mult-left-isotone mult-right-isotone top.extremum)
also have $\ldots \leq ?p$
 by (simp add: assms injective-codomain vector-inf-one-comp)
finally have $?p \ast x \ast (\neg p \sqcap x)^* \ast ?p \ast x \leq ?p \ast x$
 using mult-left-isotone by blast
hence $?p \ast x \ast (\neg p \sqcap x)^* \ast (p \sqcap x) \leq ?p \ast x$
 by (simp add: assms comp-associative vector-inf-one-comp)
also have $1: \ldots \leq ?p \ast x \ast (\neg p \sqcap x)^*$
 using mult-right-isotone star.circ-reflexive by fastforce
finally have $?p \ast x \ast (\neg p \sqcap x)^* \ast (p \sqcap x) \sqcup ?p \ast x \ast (\neg p \sqcap x)^* \ast (\neg p \sqcap x)
\leq ?p \ast x \ast (\neg p \sqcap x)^*$
 by (simp add: mult-right-isotone star.circ-plus-same star.left-plus-below-circ mult-associ)
 hence $?p \ast x \ast (\neg p \sqcap x)^* \ast ((p \sqcup \neg p) \sqcap x) \leq ?p \ast x \ast (\neg p \sqcap x)^*$
 by (simp add: comp-inf.mult-right-dist-sup mult-left-dist-sup)
 hence $?p \ast x \ast (\neg p \sqcap x)^* \ast x \leq ?p \ast x \ast (\neg p \sqcap x)^*$
 by (metis assms bijective-regular inf.absorb2 inf.cobounded1 inf.sup-monoid.add-commute shunting-p)
 hence $?p \ast x \ast (\neg p \sqcap x)^* \ast x \sqcup ?p \ast x \ast (\neg p \sqcap x)^*$
 using 1 by simp
 hence $?p \ast (1 \sqcup x) \ast (\neg p \sqcap x)^* \ast x \leq ?p \ast x \ast (\neg p \sqcap x)^*$
by (simp add: comp-associative mult-left-dist-sup mult-right-dist-sup)
also have ... \leq p \ast (I \sqcup x \ast (\neg p \sqcap x)*)
by (simp add: comp-associative mult-right-isotone)
finally have \ ?p \ast x^* \leq p \ast (I \sqcup x \ast (\neg p \sqcap x)*)
using star-right-induct by (meson dual-order.trans le-supI
mult-left-sub-dist-sup-left mult-sub-right-one)
also have \ ... = ?p \sqcup ?p \ast x \ast (\neg p \sqcap x)*
by (simp add: comp-associative semiring.
distrib-left)
finally show p \sqcap x^* \leq ?p \sqcup (p \sqcap x) \ast (\neg p \sqcap x)*
by (simp add: assms vector-inf-one-comp)
show \ ?p \sqcup (p \sqcap x) \ast (\neg p \sqcap x)* \leq p \sqcap x^*
by (metis assms comp-isotone inf.
boundedI inf.coboundedI inf.coboundedI2 inf.sup-monoid.add.
commute le-supI star.circ-increasing star.circ-transitive-equal
star-isotone star-left-unfold-equal sup.coboundedI vector-export-comp)
qed

abbreviation \ wcc x \equiv (x \sqcup x^T)^*

Theorem 6.1
lemma \ wcc-equivalence:
 equivalence \ (wcc x)
apply (intro conjI)
subgoal by (simp add: star.
circ-reflexive)
subgoal by (simp add: star.
circ-transitive-equal)
subgoal by (simp add: conv-dist-sup conv-star-commute sup.
commute)
done

Theorem 6.2
lemma \ wcc-increasing:
x \leq wcc x
by (simp add: star.
circ-sub-dist-1)

lemma \ wcc-isotone:
x \leq y \Rightarrow wcc x \leq wcc y
using conv-isotone star-isotone sup-mono by blast

lemma \ wcc-idempotent:
wcc \ (wcc x) = wcc x
using star-involutive wcc-equivalence by auto

Theorem 6.3
lemma \ wcc-below-wcc:
x \leq wcc y \Rightarrow wcc x \leq wcc y
using wcc-idempotent wcc-isotone by fastforce

Theorem 6.4
lemma \ wcc-bot:
wcc bot = 1
by (simp add: star.
circ-zero)
lemma wcc-one:
\[wcc \ 1 = 1 \]
by (simp add: star-one)

Theorem 6.5

lemma wcc-top:
\[wcc \ top = top \]
by (simp add: star.circ-top)

Theorem 6.6

lemma wcc-with-loops:
\[wcc \ x = wcc \ (x \sqcup 1) \]
using conv-dist-sup star-decompose-1 star-sup-one sup-commute
symmetric-one-closed by presburger

lemma wcc-without-loops:
\[wcc \ x = wcc \ (x \sqcap -1) \]
by (metis conv-star-commute star-sum reachable-without-loops)

lemma forest-components-wcc:
\[\text{inj} \ x \Rightarrow wcc \ x = \text{forest-components} \ x \]
by (simp add: cancel-separate-1)

abbreviation fc x ≡ x⋆∗xT⋆

Theorem 2.1

lemma fc-equivalence:
\[\text{univ} \ x \Rightarrow \text{equivalence} \ (fc \ x) \]
apply (intro conjI)
subgoal by (simp add: reflexive-mult-closed star.circ-reflexive)
subgoal by (metis cancel-separate-1 eq-iff star.circ-transitive-equal)
subgoal by (simp add: conv-dist-comp conv-star-commute)
done

Theorem 2.2

lemma fc-increasing:
\[x \leq fc \ x \]
by (metis le-supE mult-left-isotone star.circ-back-loop-fixpoint
star.circ-increasing)

Theorem 2.3

lemma fc-isotone:
\[x \leq y \Rightarrow fc \ x \leq fc \ y \]
by (simp add: comp-isotone conv-isotone star-isotone)

Theorem 2.4

lemma fc-idempotent:
\[\text{univ} \ x \Rightarrow fc \ (fc \ x) = fc \ x \]
by (metis fc-equivalence cancel-separate-1 star.circ-transitive-equal star-involutive)

Theorem 2.5

lemma fc-star:
univalent x ⇒ (fc x)^* = fc x
using fc-equivalence fc-idempotent star.circ-transitive-equal by simp

lemma fc-plus:
univalent x ⇒ (fc x)^+ = fc x
by (metis fc-star star.circ-decompose-9)

Theorem 2.6

lemma fc-bot:
fc bot = 1
by (simp add: star.circ-zero)

lemma fc-one:
fc 1 = 1
by (simp add: star-one)

Theorem 2.7

lemma fc-top:
fc top = top
by (simp add: star.circ-top)

Theorem 6.7

lemma fc-wcc:
univalent x ⇒ wcc x = fc x
by (simp add: fc-star star-decompose-1)

Theorem 4.1

lemma update-acyclic-1:
assumes acyclic (p \sqcap -1)
and point y
and point w
and y ≤ p^* ∗ w
shows acyclic ((p[w\rightarrow]y) \sqcap -1)

proof –
let ?p = p[w\rightarrow]y
have w ≤ p^* ∗ y
using assms(2-4) by (metis (no-types, lifting) bijective-reverse conv-star-commute)

hence w ∗ y^T ≤ p^*
using assms(2) shunt-bijective by blast
hence w ∗ y^T ≤ (p \sqcap -1)^*
using reachable-without-loops by auto

hence w ∗ y^T ∩ -1 ≤ (p \sqcap -1)^* ∩ -1
by (simp add: inf.coboundedI2 inf.sup-monoid.add-commute)
also have ... ≤ \((p \cap -1)^+\)
 by (simp add: star-plus-without-loops)

finally have 1: \(w \cap y^T \cap -1 \leq (p \cap -1)^+\)
 using assms(2,3) vector-covector by auto

have \(?p \cap -1 = (w \cap y^T \cap -1) \sqcup (-w \cap p \cap -1)\)
 by (simp add: inf-sup-distrib2)
also have ... ≤ \((p \cap -1)^+ \sqcup (-w \cap p \cap -1)\)
 using 1 sup-left-isotone by blast
also have ... ≤ \((p \cap -1)^+ \sqcup (p \cap -1)\)
 using comp-inf mult-semi-associative sup-right-isotone by auto
also have ... = \((p \cap -1)^+\)
 by (metis star.circ-back-loop-fixpoint sup.right-idem)

finally have \((?p \cap -1)^+ \leq (p \cap -1)^+\)
 by (metis comp-associative comp-isotone star.circ-transitive-equal star.left-plus-circ star-isotone)
also have ... ≤ -1
 using assms(1) by blast
finally show \(?thesis\)
 by simp
qed

abbreviation rectangle :: 'a ⇒ bool
 where rectangle x ≡ x * top * x = x

lemma arc-rectangle:
 arc x ⇒ rectangle x
 using arc-top-arc by blast

lemma rectangle-star-rectangle:
 rectangle a ⇒ a * x^* * a ≤ a
 by (metis mult-left-isotone mult-right-isotone top.extremum)

lemma arc-star-arc:
 arc a ⇒ a * x^* * a ≤ a
 using arc-top-arc rectangle-star-rectangle by blast

lemma star-rectangle-decompose:
 assumes rectangle a
 shows \((a \sqcup x)^* = x^* \sqcup x^* * a * x^*\)
proof (rule antisym)
 have 1: \(1 \leq x^* \sqcup x^* * a * x^*\)
 by (simp add: star.circ-reflexive sup.boundedII)
 have \((a \sqcup x) * (x^* \sqcup x^* * a * x^*) = a * x^* \sqcup a * x^* \sqcup x^* \sqcup x^* * a * x^*\)
 by (metis comp-associative semiring.combine-common-factor semiring.distrib-left sup-commute)
 also have ... = a * x^* \sqcup x^* \sqcup x^* * a * x^*
 using assms rectangle-star-rectangle by (simp add: mult-left-isotone sup-absorb1)
also have ... = \(x^+ \sqcup x^* \star a \star x^*\)
by (metis comp-associative star.circ-loop-fixpoint sup-assoc sup-commute)
also have ... \(\leq x^+ \sqcup x^* \star a \star x^*\)
using star.left-plus-below-circ sup-left-isotone by auto
finally show \((a \sqcup x)^* \leq x^+ \sqcup x^* \star a \star x^*\)
using 1 by (metis comp-right-one le-supI star-left-induct)
next
show \(x^+ \sqcup x^* \star a \star x^* \leq (a \sqcup x)^*\)
by (metis comp-isotone le-supE le-supI star-left-induct star-transitive-equal star-isotone sup-ge2)
qed

lemma star-arc-decompose:
\[
\text{arc } a \Rightarrow (a \sqcup x)^* = x^+ \sqcup x^* \star a \star x^*
\]
using arc-top-arc star-rectangle-decompose by blast

lemma plus-rectangle-decompose:
assumes rectangle \(a\)
shows \((a \sqcup x)^+ = x^+ \sqcup x^* \star a \star x^*\)
proof –
have \((a \sqcup x)^+ = (a \sqcup x) \star (x^+ \sqcup x^* \star a \star x^*)\)
by (simp add: assms star-rectangle-decompose)
also have ... = \(a \star x^+ \sqcup a \star x^* \star a \star x^+ \sqcup x^+ \sqcup a \star x^*\)
by (metis comp-associative semiring.combine-common-factor semiring.distrib-left sup-commute)
also have ... \(= x^+ \sqcup x^+ \sqcup x^+ \star a \star x^*\)
using assms rectangle-star-rectangle by (simp add: mult-left-isotone sup-absorb1)
also have ... \(= x^+ \sqcup x^* \star a \star x^*\)
by (metis comp-associative star.circ-loop-fixpoint sup-assoc sup-commute)
finally show \(?thesis\)
by simp
qed

Theorem 6.1

lemma plus-arc-decompose:
\[
\text{arc } a \Rightarrow (a \sqcup x)^+ = x^+ \sqcup x^* \star a \star x^*
\]
using arc-top-arc plus-rectangle-decompose by blast

Theorem 6.2

lemma update-acyclic-2:
assumes acyclic \((p \sqcap -1)\)
and point \(y\)
and point \(w\)
and \(y \sqcap p^* \star w = \bot\)
shows acyclic \(((p[\!\!\!w \mapsto y]) \sqcap -1)\)
proof –
let \(?p = p[\!\!\!w \mapsto y]\)
have \(y^\top \star p^* \star w \leq -1\)
using assms(4) comp-associative pseudo-complement schroeder-3-p by auto

hence 1: \(p^* \cdot w \cdot y^T \cdot p^* \leq -1 \)

by (metis comp-associative comp-commute-below-diversity
star.circ-transitive-equal)

have \(?p \cap -1 \leq (w \cap y^T) \sqcup (p \cap -1) \)

by (metis comp-inf .mult-right-dist-sup dual-order .trans inf .cobounded1
inf .cobounded12 inf .sup-monoid .add-assoc le-sup1 sup .cobounded1 sup-ge2)

also have \(... = w \cdot y^T \sqcup (p \cap -1) \)

using assms(2,3) by (simp add: vector-covector)

finally have \((?p \cap -1)^* \leq (w \cdot y^T \sqcup (p \cap -1))^+ \)

by (simp add: comp-isotone star-isotone)

also have \(... = (p \cap -1)^+ \sqcup (p \cap -1)^* \cdot w \cdot y^T \cdot (p \cap -1)^* \)

using assms(2,3) plus-arc-decompose points-arc by (simp add: comp-associative)

also have \(... \leq (p \cap -1)^+ \sqcup p^* \cdot w \cdot y^T \cdot p^* \)

using reachable-without-loops by auto

also have \(... \leq -1 \)

using 1 assms(1) by simp

finally show \(?thesis \)

by simp

qed

lemma acyclic-down-closed:
\(x \leq y \Rightarrow \text{acyclic } y \Rightarrow \text{acyclic } x \)

using comp-isotone star-isotone by fastforce

Lemma 6.3

lemma update-acyclic-3:
assumes acyclic \((p \cap -1) \)

and point \(w \)

shows acyclic \((\{w[w\rightarrow w]\} \cap -1) \)

proof –

let \(?p = p[w\rightarrow w] \)

have \(?p \cap -1 \leq (w \cap y^T \cap -1) \sqcup (p \cap -1) \)

using comp-inf .mult-right-dist-sup inf .cobounded2 inf .sup-monoid .add-assoc
sup-right-isotone by presburger

also have \(... = p \cap -1 \)

using assms(2) by (metis comp-inf .covektor-complement-closed
equivalence-top-closed inf .top .right-neutral maddux-3-13
pseudo-complement regular-closed-top regular-one-closed vector-covector vector-top-closed)

finally show \(?thesis \)

using assms(1) acyclic-down-closed by blast

qed

end

custom stonetion-algebra-tarski

begin
lemma point-in-vector-partition:
assumes point x and vector y
shows $x \leq -y \lor x \leq -y$
proof (cases $x \cdot x^T \leq -y$)
case True
have $x \leq x \cdot x^T \cdot x$
 by (simp add: ex231c)
also have $... \leq -y \cdot x$
 by (simp add: True mult-left-isotone)
also have $... \leq -y$
 by (metis assms (2) mult-right-isotone top.extremum
 vector-complement-closed)
finally show ?thesis
 by simp
next
case False
have $x \leq x \cdot x^T \cdot x$
 by (simp add: ex231c)
also have $... \leq -y \cdot x$
 using False assms (1) arc-in-partition mult-left-isotone point-arc by blast
also have $... \leq -y$
 by (metis assms (2) mult-right-isotone top.extremum
 vector-complement-closed)
finally show ?thesis
 by simp
qed

lemma point-atomic-vector:
assumes point x and vector y and regular y and $y \leq x$
shows $y = x \lor y = \bot$
proof (cases $x \leq -y$)
case True
thus ?thesis
 using assms (4) inf.absorb2 pseudo-complement by force
next
case False
thus ?thesis
 using assms point-in-vector-partition by fastforce
qed

Theorem 4.3

lemma distinct-points:
assumes point x and point y and $x \neq y$
\[
\text{shows } x \cap y = \text{bot}
\]
\begin{itemize}
\item by (metis asssms antisym comp-bijective-complement inf.sap-monoid.add-commute mult-left-one pseudo-complement regular-one-closed point-in-vector-partition)
\end{itemize}

end

3 Verifying Operations on Disjoint-Set Forests

syntax
\[
\text{-rel-update :: idt } \Rightarrow 'a \Rightarrow 'a \Rightarrow 'b \text{ com } ((2\cdot[]) := -) [70, 65, 65] 61
\]

translations
\[
x[y] := z \Rightarrow (x := (y \cap z^T) \sqcup (\text{CONST } \text{uminus} y \cap x))
\]

class finite-regular-p-algebra = p-algebra +
\begin{itemize}
\item assumes finite-regular: finite \{ x . regular x \}
\end{itemize}

class stone-kleene-relation-algebra-tarski = stone-kleene-relation-algebra + stone-relation-algebra-tarski

class stone-kleene-relation-algebra-tarski-finite-regular = stone-kleene-relation-algebra-tarski + finite-regular-p-algebra

begin

abbreviation root p x \equiv p^{T*} \ast x \cap (p \cap 1) \ast \text{top}

Theorem 3.1

lemma root-var:
\[
\text{root } p x = (p \cap 1) \ast p^{T*} \ast x
\]
\begin{itemize}
\item by (simp add: coreflexive-comp-top-inf inf-commute mult-assoc)
\end{itemize}

Theorem 3.2

lemma root-successor-loop:
\[
\text{univalent } p \implies \text{root } p x = p[\text{root } p x]
\]
\begin{itemize}
\item by (metis root-var injective-codomain comp-associative conv-dist-inf coreflexive-symmetric equivalence-one-closed inf.cobounded2 univalent-conv-injective)
\end{itemize}

lemma root-transitive-successor-loop:
\[
\text{univalent } p \implies \text{root } p x = p^{T*} \ast (\text{root } p x)
\]
\begin{itemize}
\item by (metis mult-1-right star-one star-simulation-right-equal root-successor-loop)
\end{itemize}

Theorem 1.8

lemma update-postcondition:
\begin{itemize}
\item assumes point x point y
\item shows \(x \cap p = x \ast y^T \longleftrightarrow p[[x]] = y \)
\item apply (rule iffI)
\end{itemize}
subgoal by (metis assms comp-associative conv-dist-comp conv-involute
covector-inf-comp-3 equivalence-top-closed vector-covector)

subgoal
 apply (rule antisym)
subgoal by (metis assms conv-dist-comp conv-involute inf.boundedI
inf.coboundedI vector-covector vector-restrict-comp-conv)

subgoal by (smt assms comp-associative conv-dist-comp conv-involute
covector-restrict-comp-conv dense-conv-closed equivalence-top-closed inf.boundedI
shunt-mapping vector-covector preorder-idempotent)
done
done

done

3.1 Make-set

definition make-set-postcondition p x p0 \equiv\ x \sqcap p = x \sqcap p0 = x \sqcap p = -x \sqcap p0

theorem make-set:
 VARS p
 [point x \land p0 = p]
 p[x] := x
 [make-set-postcondition p x p0]
 apply vcg-tc-simp
 by (simp add: make-set-postcondition-def inf-sup-distrib1 inf-assoc[THEN sym]
vector-covector[THEN sym])

lemma make-set-exists:
 point x \implies \exists p'. make-set-postcondition p' x p
using tc-extract-function make-set by blast

definition make-set p x \equiv (SOME p'. make-set-postcondition p' x p)

lemma make-set-function:
 assumes point x
 and p' = make-set p x
 shows make-set-postcondition p' x p
proof
 let ?P = \lambda p'. make-set-postcondition p' x p
 have ?P (SOME z . ?P z)
 using assms(1) make-set-exists by (meson someI)
 thus ?thesis
 using assms(2) make-set-def by auto
qed

3.2 Find-set

abbreviation disjoint-set-forest p \equiv mapping p \land acyclic (p \sqcap -1)

definition find-set-precondition p x \equiv disjoint-set-forest p \land point x

definition find-set-invariant p x y \equiv find-set-precondition p x \land point y \land y \leq p^Ty \sqcap x
definition find-set-postcondition \(p \ x \ y \equiv \text{point} \ y \land y = \text{root} \ p \ x \)

lemma find-set-1:
find-set-precondition \(p \ x \implies \text{find-set-invariant} \ p \ x \ x \)
apply (unfold find-set-invariant-def)
using mult-left-isotone star.circ-reflexive find-set-precondition-def by fastforce

lemma find-set-2:
find-set-invariant \(p \ x \ y \land y \neq p[[y]] \land \text{card} \ \{ z . \ \text{regular} \ z \land z \leq p^{T^*} \ast y \} = n \implies \text{find-set-invariant} \ p \ x (p[[y]]) \land \text{card} \ \{ z . \ \text{regular} \ z \land z \leq p^{T^*} \ast (p[[y]]) \} < n \)

proof —
let ?s = \{ z . \ \text{regular} \ z \land z \leq p^{T^*} \ast y \}
let ?t = \{ z . \ \text{regular} \ z \land z \leq p^{T^*} \ast (p[[y]]) \}
assume 1: find-set-invariant \(p \ x \ y \land y \neq p[[y]] \land \text{card} \ ?s = n \)
hence 2: point \((p[[y]]) \)
using read-point find-set-invariant-def find-set-precondition-def by simp
show \(\text{find-set-invariant} \ p \ x (p[[y]]) \land \text{card} \ ?t < n \)
proof (unfold find-set-invariant-def, intro conjI)
show \(\text{find-set-precondition} \ p \ x \)
using 1 find-set-invariant-def by simp
show vector \((p[[y]]) \)
using 2 by simp
show surjective \((p[[y]]) \)
using 2 by simp
show \(\text{p}[[y]] \leq p^{T^*} \ast x \)
using 1 by (metis (hide-lams) find-set-invariant-def comp-associative comp-isotone star.circ-increasing star.circ-transitive-equal)
show \(\text{card} \ ?t < n \)
proof —
have 3: \((p^T \cap -1) \ast (p^T \cap -1)^+ \ast y \leq (p^T \cap -1)^+ \ast y \)
by (simp add: mult-left-isotone mult-right-isotone star.left-plus-below-circ)
have \(p[[y]] = (p^T \cap 1) \ast y \lor (p^T \cap -1) \ast y \)
by (metis maddux-3-11-pp mult-right-dist-sup regular-one-closed)
also have \... \leq ((p[[y]]) \cap y) \lor (p^T \cap -1) \ast y \)
by (metis comp-left-subdist-inf mult-1-left semiring.add-right-mono)
also have \... = (p^T \cap -1) \ast y \)
using 1 2 find-set-invariant-def distinct-points by auto
finally have 4: \((p^T \cap -1)^+ \ast (p[[y]]) \leq (p^T \cap -1)^+ \ast y \)
using 3 by (metis inf.antisym-conv inf.eq-refl inf-le1 mult-left-isotone star-plus mult-assoc)
hence \(p^{T^*} \ast (p[[y]]) \leq p^{T^*} \ast y \)
by (metis mult-isotone order-refl star.left-plus-below-circ star-plus mult-assoc)
hence 5: \(?t \subseteq ?s \)
using order-trans by auto
have 6: \(y \in ?s \)
using 1 find-set-invariant-def bijective-regular mult-left-isotone
star.circ-reflexive by fastforce
have 7: ~ y ∈ ?t
proof
 assume y ∈ ?t
 hence y ≤ (p⁺T ∩ -1)⁺ * y
 using 4 by (metis reachable-without-loops mem-Collect-eq order-trans)
 hence y * y⁺T ≤ (p⁺T ∩ -1)⁺
 using 1 find-set-invariant-def shunt-bijective by simp
 also have ... ≤ -1
 using 1 by (metis (mono-tags, lifting) find-set-invariant-def
find-set-precondition-def conv-dist-comp conv-dist-inf conv-isotone
conv-star-commute equivalence-one-closed star.circ-plus-same
symmetric-complement-closed)
finally have y ≤ -y
 using Schroeder-4-p by auto
thus False
 using 1 by (metis find-set-invariant-def shunt-bijective shunt-mapping top-right-mult-increasing
pseudo-complement surjective-conv-total top.extremum vector-top-closed
regular-closed-top)
qed
have card ?t < card ?s
 apply (rule psubset-card-mono)
subgoal using finite-regular by simp
subgoal using 5 6 7 by auto
done
thus ?thesis
 using 1 by simp
qed
qed

lemma find-set-3:
 find-set-invariant p x y ∧ y = p[[y]] → find-set-postcondition p x y
proof –
 assume 1: find-set-invariant p x y ∧ y = p[[y]]
 show find-set-postcondition p x y
 proof (unfold find-set-postcondition-def, rule conjI)
 show point y
 using 1 find-set-invariant-def by simp
 show y = root p x
 using antisym
 have y * y⁺T ≤ p
 using 1 by (metis find-set-invariant-def find-set-precondition-def
shunt-bijective shunt-mapping top-right-mult-increasing)
 hence y * y⁺T ≤ p ∩ 1
 using 1 find-set-invariant-def le-infI by blast
 hence y ≤ (p ∩ 1) * top
using 1 by (metis find-set-invariant-def order-lesseq-imp shunt-bijective)
thus \(y \leq \text{root } p \ x \n
using 1 find-set-invariant-def by simp
next
have 2: \(x \leq p^* \ast y \)
using 1 find-set-invariant-def find-set-precondition-def bijective-reverse
conv-star-commute by auto
have \(p^T \ast p^* \ast y = p^T \ast p \ast p^* \ast y \uplus (p[[y]]) \)
by (metis comp-associative mult-left-dist-sup star.circ-loop-fixpoint)
also have \(\ldots \leq p^* \ast y \uplus y \)
using 1 by (metis find-set-invariant-def find-set-precondition-def
comp-isotone mult-left-sub-dist-sup semiring.add-right-mono
star.circ-back-loop-fixpoint star.circ-circ-mult star.circ-top
star.circ-transitive-equal star-involutive star-one)
also have \(\ldots = p^* \ast y \)
by (metis star.circ-loop-fixpoint sup.left-idem sup-commute)
finally have 3: \(p^{T^*} \ast x \leq p^* \ast y \)
using 2 by (simp add: comp-associative star-left-induct)
have \(p \ast y \cap (p \cap 1) \ast top = (p \cap 1) \ast p \ast y \)
using comp-associative coreflexive-comp-top-inf inf-commute by auto
also have \(\ldots \leq p^T \ast p \ast y \)
by (metis inf.cobounded2 inf.sup-monoid.add-commute mult-left-isotone
one-inf-conv)
also have \(\ldots \leq y \)
using 1 find-set-invariant-def find-set-precondition-def mult-left-isotone by fastforce
finally have 4: \(p \ast y \leq y \uplus -((p \cap 1) \ast top) \)
using 1 by (metis find-set-invariant-def shunting-p bijective-regular)
have \(p^T \ast p \ast (p \cap 1) \leq p^T \ast 1 \)
using 1 by (metis find-set-invariant-def find-set-precondition-def N-top
comp-isotone coreflexive-idempotent inf.cobounded2 inf.sup-monoid.add-commute
inf-assoc one-inf-conv shunt-mapping)
hence \(p^T \ast (p \cap 1) \ast top \leq (p \cap 1) \ast top \)
using inf-commute mult-isotone one-inf-conv by auto
hence \(p \ast -((p \cap 1) \ast top) \leq -((p \cap 1) \ast top) \)
by (metis comp-associative inf.sup-monoid.add-commute p-antitone
p-antitone-iff schroeder-3-p)
hence \(p \ast y \cap p \ast -((p \cap 1) \ast top) \leq y \uplus -((p \cap 1) \ast top) \)
using 4 dual-order.trans le-supl sup-ge2 by blast
hence \(p \ast (y \uplus -((p \cap 1) \ast top)) \leq y \uplus -((p \cap 1) \ast top) \)
by (simp add: mult-left-dist-sup)
hence \(p^* \ast y \leq y \uplus -((p \cap 1) \ast top) \)
by (simp add: star-left-induct)
hence \(p^{T^*} \ast x \leq y \uplus -((p \cap 1) \ast top) \)
using 3 dual-order.trans by blast
thus \(\text{root } p \ x \leq y \)
using 1 by (metis find-set-invariant-def shunting-p bijective-regular)
qed
theorem find-set:
VARS y
[find-set-precondition p x]
y := x;
WHILE y \neq p[[y]]
{find-set-invariant p x y }
VAR {card \{z . regular z \land z \leq p^T \ast y \}}
DO y := p[[y]]
OD
[find-set-postcondition p x y]
apply vcg-tc-simp
apply (fact find-set-1)
apply (fact find-set-2)
by (fact find-set-3)

lemma find-set-exists:
find-set-precondition p x \implies \exists y . find-set-postcondition p x y
using tc-extract-function find-set by blast

3.3 Path Compression

definition path-compression-precondition p x y \equiv disjoint-set-forest p \land point x
\land point y \land y = root p x
definition path-compression-invariant p x y p0 w \equiv
path-compression-precondition p x y \land point w \land y \leq p^T \ast w \land (w \neq x \implies
p[[x]] = y \land y \neq x \land p^T \ast w \leq -x) \land p \cap 1 = p0 \cap 1 \land fc p = fc p0
definition path-compression-postcondition p x y p0 \equiv
path-compression-precondition p x y \land p \cap 1 = p0 \cap 1 \land fc p = fc p0

lemma path-compression-1:
path-compression-precondition p x y \land p0 = p \implies path-compression-invariant p
x y p x
using path-compression-invariant-def path-compression-precondition-def by auto
lemma path-compression-2:
path-compression-invariant p x y p0 w ∧ y ≠ p[[w]] ∧ card { z . regular z ∧ z ≤ pT* ∗ w } = n ⇒ path-compression-invariant (p[w→y]) x y p0 (p[[w]]) ∧ card { z . regular z ∧ z ≤ (p[w→y])T* ∗ (p[[w]]) } ≤ n
proof –
 let ?p = p[w→y]
 let ?s = { z . regular z ∧ z ≤ pT* ∗ w }
 let ?t = { z . regular z ∧ z ≤ ?pT* ∗ (p[[w]]) }
 assume 1: path-compression-invariant p x y p0 w ∧ y ≠ p[[w]] ∧ card ?s = n
 hence 2: point (p[[w]])
 by (simp add: path-compression-invariant-def
path-compression-precondition-def read-point)
 show path-compression-invariant ?p x y p0 (p[[w]]) ∧ card ?t < n
 proof (unfold path-compression-invariant-def, intro conjI)
 have 3: mapping ?p
 using 1 by (meson path-compression-invariant-def
path-compression-precondition-def update-mapping bijective-regular)
 have 4: w ≠ y
 using 1 by (metis (no-types, hide-lams) path-compression-invariant-def
path-compression-precondition-def root-successor-loop)
 hence 5: w ⊓ y = bot
 using 1 distinct-points path-compression-invariant-def
path-compression-precondition-def by auto
 hence y * wT ≤ −1
 using pseudo-complement schroeder-4-p by auto
 hence y * wT ≤ pT* ⊓ −1
 using 1 shunt-bijective path-compression-invariant-def by auto
 also have ... ≤ pT+
 by (simp add: star-plus-without-loops)
 finally have 6: y ≤ pT* ∗ w
 using 1 shunt-bijective path-compression-invariant-def by blast
 have 7: w * wT ≤ −pT+
 proof (rule cocontr)
 assume − w * wT ≤ −pT+
 hence w * wT ≤ −pT+
 using 1 path-compression-invariant-def point-arc arc-in-partition by blast
 hence w * wT ≤ pT* ⊓ 1
 using 1 path-compression-invariant-def path-compression-precondition-def
mapping-regular regular-conv-closed regular-conv-closed-star regular-mult-closed by simp
 also have ... = ((pT ⊓ 1) ∗ pT* ⊓ 1) ∪ ((pT ⊓ −1) ∗ pT* ⊓ 1)
 by (metis comp-inf mult-right-dist-sup maddux-3-11-pp mult-right-dist-sup
regular-one-closed)
 also have ... = ((pT ⊓ 1) ∗ pT* ⊓ 1) ∪ ((p ⊓ −1)+ ⊓ 1)T
 by (metis cone-complement conv-dist-inf cone-plus-commute
equivalence-one-closed reachable-without-loops)
 also have ... ≤ ((pT ⊓ 1) ∗ pT* ⊓ 1) ∪ (−1 ⊓ 1)T
 using 1 by (metis (no-types, hide-lams) path-compression-invariant-def
... ...
path-compression-precondition-def sup-right-isotone inf.sup-left-isotone
conv-isotone)
also have ... = (pT ⨿ 1) * pT* ⨿ 1
by simp
also have ... ≤ (pT ⨿ 1) * top ⨿ 1
by (metis comp-inf.comp-isotone coreflexive-comp-top-inf
equivalence-one-closed inf.cobounded1 inf.cobounded2)
also have ... ≤ pT
by (simp add: coreflexive-comp-top-inf-one)
finally have w * wT ≤ pT
by simp
hence w ≤ p[[w]]
using 1 path-compression-invariant-def shunt-bijective by blast
hence w = p[[w]]
using 1 2 path-compression-invariant-def epm-3 by fastforce
hence w = pT+ * w
using 2 by (metis comp-associative star.circ-top star-simulation-right-equal)
thus False
using 1 4 6 epm-3 path-compression-invariant-def
path-compression-precondition-def by fastforce
qed
hence 8: w ⨿ pT+ * w = bot
using p-antitone-iff pseudo-complement Schroeder-4-p by blast
show y ≤ ?pT* * (p[[w]])
proof –
 have (w ⨿ yT)T * (¬w ⨿ p)T* * pT * w ≤ wT * (¬w ⨿ p)T* * pT * w
 by (simp add: conv-isotone mult-left-isotone)
 also have ... ≤ wT * pT* * pT * w
 by (simp add: conv-isotone mult-left-isotone star-isotone mult-right-isotone)
 also have ... = wT * pT+ * w
 by (simp add: star-plus mult-assoc)
 also have ... = bot
 using 1 8 by (metis (no-types, hide-lams) path-compression-invariant-def
covector-inf-comp-3 mult-associative conv-dist-comp conv-star-commute
covector-bot-closed equivalence-top-closed inf.le-iff-sup mult-left-isotone)
finally have (w ⨿ yT)T ⨿ ((¬w ⨿ p)T* * pT * w ≤ (¬w ⨿ p)T * (¬w ⨿ p)T* * pT * w
by (simp add: bot-unique mult-right-dist-sup)
also have ... ≤ (¬w ⨿ p)T* * pT * w
by (simp add: mult-left-isotone star.left-plus-below-circ)
finally have ?pT* * (¬w ⨿ p)T* * pT * w ≤ (¬w ⨿ p)T* * pT * w
by (simp add: conv-dist-sup)
hence ?pT* * pT* * w ≤ (¬w ⨿ p)T* * pT * w
by (metis comp-associative star.circ-loop-fixpoint star-left-induct
sup-commute sup-left-sup-sup-left-divisibility)
hence w ⨿ ?pT* * pT* * w ≤ w ⨿ ((¬w ⨿ p)T* * pT * w
using inf.sup-right-isotone by blast
also have ... ≤ w ⨿ pT* * pT * w
using conv-isotone mult-left-isotone star-isotone inf.sup-right-isotone by simp
also have ... = bot
using 8 by (simp add: star-plus)
finally have 9: \(w^T \otimes p^T \otimes p^T \otimes w = bot \)
using 1 by (metis (no-types, hide-lams) path-compression-invariant-def
covector-inf-comp-3 mult-assoc cone-dist-comp covector-bot-closed
equivalence-top-closed inf.le-iff-sup mult-left-isotone bot-least inf.absorb1)
also have \(p^T \otimes p^T \otimes p^T \otimes w \leq ((w \cap p)^T \cup (w \cap p)^T) \otimes p^T \otimes p^T \otimes w \)
using 1 by (metis (no-types, lifting) bijective-regular conv-dist-sup
inf-commute maddux-3-11-pp path-compression-invariant-def)
also have ... = (w \cap p)^T \otimes p^T \otimes p^T \otimes w \cup (w \cap p)^T \otimes p^T \otimes p^T \otimes w
by (simp add: conv-isotone mult-left-isotone)
also have ... \leq p^T \otimes p^T \otimes w
by (simp add: comp-isotone star.left-plus-below-circ)
finally have \(p^T \otimes p^T \otimes w \leq p^T \otimes p^T \otimes w
by (metis comp-associative star.circ-loop-fixpoint star-left-induct
sup-commute sup-bot sup-left-divisibility)
thus \(y \leq p^T \otimes (p[[w]]) \)
using 6 by (simp add: star-simulation-right-equal mult-assoc)
Qed
have 10: acyclic \(\forall p \neq -1 \)
using 1 update-acyclic-1 path-compression-invariant-def
path-compression-precondition-def by auto
have \(p[[p^T \otimes w]] \leq p^T \otimes w \)
proof
have \((w^T \cap y) \otimes p^T \otimes w = y \cap w^T \otimes p^T \otimes w \)
using 1 by (metis (no-types, hide-lams) path-compression-invariant-def
path-compression-precondition-def inf-commute vector-inf-comp)
also have ... \leq y \cup (w^T \cap p)^T \otimes p^T \otimes w
by (simp add: conv-isotone sup-right-isotone conv-dist-sup
mult-left-isotone by auto)
also have ... \leq y \cup p^T \otimes p^T \otimes w
using mult-left-isotone sup-right-isotone by auto
finally show \(?thesis \)
by simp

21
qed

hence 11: \(?pT^* * (p[[w]]) \leq pT^+ * w \)
using star-left-induct by (simp add: mult-left-isotone star.circ-mult-increasing)

hence 12: \(?pT^+ * (p[[w]]) \leq pT^+ * w \)
using dual-order.trans mult-left-isotone star.left-plus-below-circ by blast

have 13: \(?p[[x]] = y \land y \neq x \land ?pT^* * (p[[w]]) \leq -x \)
proof (cases \(w = x \))

 case True
 hence \(?p[[x]] = (wT \cap y) * w \cup (-wT \cap pT) * w \)
 by (simp add: conv-complement conv-dist-inf conv-dist-sup mult-right-dist-sup)
 also have ... = \((wT \cap y) * w \cup -w \cap w \)
 using 1 by (metis (no-types, lifting) conv-complement inf.sup-monoid.add-commute path-compression-invariant-def covector-inf-comp-3 vector-complement-closed)
 also have ... = \(y * w \)
 using 1 inf.sup-monoid.add-commute path-compression-invariant-def covector-inf-comp-3 by simp
 also have ... = \(pT * (-w \cap x) \)
 using 1 False path-compression-invariant-def
path-compression-precondition-def distinct-points by auto
 also have ... = \(y \)
 using 1 False path-compression-invariant-def path-compression-precondition-def distinct-points inf.absorb2 pseudo-complement by auto
finally show \(?thesis\)
 using 1 12 False path-compression-invariant-def by auto

next
 case False
 have \(?p[[x]] = (wT \cap y) * x \cup (-wT \cap pT) * x \)
 by (simp add: conv-complement conv-dist-inf conv-dist-sup mult-right-dist-sup)
 also have ... = \(y * (w \cap x) \cup pT * (-w \cap x) \)
 using 1 by (metis (no-types, lifting) conv-complement inf.sup-monoid.add-commute path-compression-invariant-def covector-inf-comp-3 vector-complement-closed)
 also have ... = \(pT * (-w \cap x) \)
 using 1 False path-compression-invariant-def
path-compression-precondition-def distinct-points by auto
 also have ... = \(y \)
 using 1 False path-compression-invariant-def path-compression-precondition-def distinct-points inf.absorb2 pseudo-complement by auto
finally show \(?thesis\)
 using 1 12 False path-compression-invariant-def by auto

qed

thus \(p[[w]] \neq x \rightarrow ?p[[x]] = y \land y \neq x \land ?pT^* * (p[[w]]) \leq -x \)
by simp

have 14: \(?pT^* * x = x \cup y \)
proof (rule antisym)
 have \(?p^T * (x \sqcup y) = y \sqcup {?p^T * y}
 using 13 by (simp add: mult-left-dist-sup)
 also have \(\ldots = y \sqcup (w^T \sqcap y) * y \sqcup (-w^T \sqcap p^T) * y\)
 by (simp add: cone-complement cone-dist-inf cone-dist-sup)
 mult-right-dist-sup sup-assoc
 also have \(\ldots \leq y \sqcup (w^T \sqcap y) * y \sqcup p^T * y\)
 using mult-left-isotone sup-right-isotone by auto
 also have \(\ldots = y \sqcup (w^T \sqcap y) * y\)
 using 1 by (simp add: cone-complement cone-dist-inf cone-dist-sup)
path-compression-invariant-def path-compression-precondition-def
root-successor-loop
 also have \(\ldots \leq y \sqcup y * y\)
 using left by (simp add: mult-left-isotone sup-right-isotone by auto)
 also have \(\ldots = y\)
 using 1 by (metis mult-semi-associative sup-absorb1)
finally have 16: \((?p \sqcap 1) * y = y\)
 using 1 by (metis mult-assoc root-var)
path-compression-precondition-def root-var
 also have \(\ldots \leq (?p^T * x \sqcup x\)).
 by (simp add: star-left-induct)
next
 show \(x \sqcup y \leq (?p^T * x\).
 using 13 by (metis mult-semi-associative sup-absorb1)
star.circ-loop-fixpoint sup.boundedI sup-ge2
qtd
 have 15: \(y = \text{root} ?p x\)
proof
 have \((?p \sqcap 1) * y = (p \sqcap 1) * (p \sqcap 1) * p^T * x\)
 using 1 path-compression-invariant-def path-compression-precondition-def
root-var mult-assoc by auto
 also have \(\ldots = (p \sqcap 1) * p^T * x\)
 using coreflexive-idempotent by auto
finally have 16: \((?p \sqcap 1) * y = y\)
 using 1 path-compression-invariant-def path-compression-precondition-def
root-var by auto
 have 17: \((?p \sqcap 1) * x \leq y\)
 using 1 by (metis mult-left-isotone star.circ-reflexive path-compression-invariant-def
path-compression-precondition-def root-var)
 have root \(?p x = (?p \sqcap 1) * (x \sqcup y)\)
 using 14 by (metis mult-assoc root-var)
 also have \(\ldots = (w \sqcap y^T \sqcap 1) * (x \sqcup y) \sqcup (-w \sqcap p \sqcap 1) * (x \sqcup y)\)
 by (simp add: inf-sup-distrib2 semiring.distrib-right)
 also have \(\ldots = (w \sqcap 1 \sqcap y^T) * (x \sqcup y) \sqcup (-w \sqcap p \sqcap 1) * (x \sqcup y)\)
 by (simp add: inf.left-commute inf.sup-monoid.add-commute)
 also have \(\ldots = (w \sqcap 1) * (y \sqcap (x \sqcup y)) \sqcup (-w \sqcap p \sqcap 1) * (x \sqcup y)\)
 using 1 by (metis mult-left-isotone path-compression-invariant-def
path-compression-precondition-def covector-inf-comp-3)

also have \((w \cap I) \ast y \sqcup (\neg w \cap p \cap I) \ast (x \sqcup y) \)
by (simp add: inf.absorb1)
also have \((w \cap I \ast y) \sqcup (\neg w \cap (p \cap I) \ast (x \sqcup y)) \).
using 1 by (metis (no-types, lifting) inf-associative vector-complement-closed path-compression-invariant-def vector-inf-comb)
also have \((w \cap y) \sqcup (\neg w \cap (p \cap 1) \ast (x \sqcup y)) \)
using 16 by (simp add: mult-left-dist-sup)
also have \((w \cap y) \sqcup (\neg w \cap y) \)
using 17 by (simp add: sup.absorb2)
also have \(y \)
using 1 by (metis id-apply bijective-regular comp-inf.right-neutral regular-complement-top path-compression-invariant-def)
finally show \(?thesis\)
by simp
done.

show path-compression-precondition \(?p x y\)
using 1 3 10 15 path-compression-invariant-def
path-compression-precondition-def by auto
show vector (p[[w]])
using 2 by simp
show injective (p[[w]])
using 2 by simp
show surjective (p[[w]])
using 2 by simp
have \(w \cap p \cap I \leq w \cap w^T \cap p \)
by (metis inf.boundedE inf.boundedI inf.cobounded1 inf.cobounded2 one-inf-conv)
also have \(w \ast w^T \cap p \)
using 1 vector-convector path-compression-invariant-def by auto
also have \((\neg p^T \cap p) \)
using 7 by (simp add: inf.cobounded12 inf.sup-monoid.add-commute)
finally have \(w \cap p \cap I = bot \)
by (metis (no-types, hide-lams) conv-dist-inf coreflexive-symmetric inf.absorb1 inf.boundedE inf.inf.cobounded2 pseudo-complement star.circ-mult-increasing)
also have \(w \cap y^T \cap I = bot \)
using 5 antisymmetric-bot-closed asymmetric-bot-closed comp-inf.schroeder2 inf.absorb1 one-inf-conv by fastforce
finally have \(w \cap p \cap I = w \cap y^T \cap I \)
by simp
thus \(?p \cap I = p0 \cap I\)
using 1 by (metis bijective-regular comp-inf.semiring.distrib-left inf.sup-monoid.add-commute maddux-3-11-pp path-compression-invariant-def)
show fc \(?p = fc p0\)
proof -
have \(p[[w]] = p^T \ast (w \cap p^T \ast y) \)
using 1 by (metis (no-types, lifting) bijective-reverse conv-star-commute inf.absorb1 path-compression-invariant-def path-compression-precondition-def)
also have ... = p^T * (w \cap p^*) * y
 using 1 vector-inf-comp path-compression-invariant-def mult-assoc by auto
also have ... = p^T * ((w \cap 1) \cup (w \cap p) * (\neg w \cap p^*)) * y
 using 1 omit-redundant-points path-compression-invariant-def by auto
also have ... = p^T * (w \cap 1) * y \cup p^T * (w \cap p) * (\neg w \cap p^*) * y
 by (simp add: comp-associative mult-left-dist-sup mult-right-dist-sup)
also have ... \leq p^T * y \cup p^T * (w \cap p) * (\neg w \cap p^*) * y
 by (metis semiring.add-right-mono comp-isotone eq-iff inf.cobounded1
inf.sup-monoid.add-commute mult-1-right)
also have ... = y \cup p^T * (w \cap p) * (\neg w \cap p)^* * y
 using 1 path-compression-invariant-def path-compression-precondition-def
root-successor-loop by fastforce
also have ... = (\neg w \cap p)^* * y
 by (metis star.circ-loop-fixpoint sup.left-idem sup-commute)
finally have 18: p[[w]] \leq (\neg w \cap p)^* * y
 by simp
have p^T * (\neg w \cap p)^* * y = p^T * y \cup p^T * (\neg w \cap p) * (\neg w \cap p)^* * y
 by (metis comp-associative mult-left-dist-sup star.circ-loop-fixpoint
sup-commute)
also have ... = y \cup p^T * (\neg w \cap p) * (\neg w \cap p)^* * y
 using 1 path-compression-invariant-def path-compression-precondition-def
root-successor-loop by fastforce
also have ... \leq y \cup p^T * p * (\neg w \cap p)^* * y
 using comp-isotope sup-right-isotone by auto
also have ... \leq y \cup (\neg w \cap p)^* * y
 using 1 by (metis (no-types, lifting) mult-left-isotone star.circ-circ-mult
star-involutive star-one sup-right-isotone path-compression-invariant-def
path-compression-precondition-def)
also have ... = (\neg w \cap p)^* * y
 by (metis star.circ-loop-fixpoint sup.left-idem sup-commute)
finally have 18: p[[w]] \leq (\neg w \cap p)^* * y
 by simp
have p^T * (\neg w \cap p)^* * y = p^T * y \cup p^T * (\neg w \cap p) * (\neg w \cap p)^* * y
 by (metis comp-associative mult-left-dist-sup star.circ-loop-fixpoint
sup-commute)}
by (metis conv-dist-comp conv-dist-inf conv-involutive conv-isotone
conv-star-commute)

hence \(w \sqcap p \leq (w \sqcap y^T) \ast (-w \sqcap p)^T \ast \)

using 1 by (metis inf.absorb1 inf.left-commute inf.left-idem inf.orderI
vector-inf-comp path-compression-invariant-def)

also have ... \(\leq (w \sqcap y^T) \ast ?p^T \ast \)
by (simp add: conv-isotone mult-right-isotone star-isotone)

also have ... \(\leq ?p \ast ?p^T \ast \)
by (simp add: mult-left-isotone)

also have ... \(\leq fc ?p \)
by (simp add: mult-left-isotone star.circ-increasing)

finally have 20: \(w \sqcap p \leq fc ?p \)
by simp

have \(-w \sqcap p \leq ?p \)
by simp

also have ... \(\leq fc ?p \)
by (simp add: fc-increasing)

finally have \((w \sqcup -w) \sqcap p \leq fc ?p \)
using 20 by (simp add: comp-inf.semiring.distrib-left
inf.sup-monoid.add-commute)

hence \(p \leq fc ?p \)

using 1 by (metis (no-types, hide-lams) bijective-regular
comp-inf.semiring.distrib-left inf.sup-monoid.add-commute maddux-3-11-pp
path-compression-invariant-def)

hence 21: \(fc p \leq fc ?p \)

using 3 fc-idempotent fc-isotone by fastforce

have \(?p \leq (w \sqcap y^T) \sqcup p \)
using sup-right-isotone by auto

also have ... \(\leq w \ast y^T \sqcup p \)
using 1 path-compression-invariant-def path-compression-precondition-def
vector-covector by auto

also have ... \(\leq p^T \sqcup p \)
using 1 by (metis (no-types, lifting) conv-dist-comp conv-involutive
conv-isotone conv-star-commute le-sup1 shunt-bijective star.circ-increasing
sup-absorb1 path-compression-invariant-def)

also have ... \(\leq fc p \)
using fc-increasing star.circ-back-loop-prefixpoint by auto

finally have \(fc ?p \leq fc p \)
using 1 by (metis (no-types, lifting) path-compression-invariant-def path-compression-precondition-def fc-idempotent fc-isotone)

thus \(\text{thesis} \)

using 1 21 path-compression-invariant-def by simp

qed

show \(\text{card} \ ?t < n \)

proof -

\begin{align*}
\text{have} \quad & \ ?p^T \ast p^T \ast \ast w = (w^T \sqcap y) \ast p^T \ast \ast w \sqcup (-w^T \sqcap p^T) \ast p^T \ast \ast w \\
& \text{by (simp add: cone-complement conv-dist-inf conv-dist-sup mult-right-dist-sup)}
\end{align*}

also have ... \(\leq (w^T \sqcap y) \ast p^T \ast \ast w \sqcup p^T \ast p^T \ast \ast w \)
using mult-left-isotone sup-right-isotone by auto
also have ... ≤ (w \ T \ y) \ p^{T*} \ w \ p^{T*} \ w
using mult-left-isotone star.left-plus-below-circ sup-right-isotone by blast
also have ... ≤ y \ p^{T*} \ w \ p^{T*} \ w
using semiring.add-right-mono mult-left-isotone by auto
also have ... ≤ y \ top \ p^{T*} \ w
by (simp add: comp-associative le-supI1 mult-right-isotone)
also have ... = p^{T*} \ w
using 1 path-compression-invariant-def path-compression-precondition-def
sup-absorb2 by auto
finally have ?p^{T*} \ p^{T*} \ w ≤ p^{T*} \ w
using 11 by (metis dual-order.trans star.circ-loop-fixpoint sup-commute
sup-ge2 mult-assoc)
hence 22: ?t ⊆ ?s
using order-lesseq-imp mult-assoc by auto
have 23: w ∈ ?s
using 1 bijective-regular path-compression-invariant-def eq-iff
star.circ-loop-fixpoint by auto
have 24: ¬ w ∈ ?t
proof
assume w ∈ ?t
hence 25: w ≤ (?p^{T} \ - 1)^{T} \ (p[[w]])
using reachable-without-loops by auto
hence p[[w]] ≤ (?p \ - 1)^{T} \ w
using 1 2 by (metis (no-types, hide-lams) bijective-reverse
cone-star-commute reachable-without-loops path-compression-invariant-def)
also have ... ≤ p^{T*} \ w
proof
have p^{T*} \ y = y
using 1 path-compression-invariant-def
path-compression-precondition-def root-transitive-successor-loop by fastforce
hence y^{T} \ p^{*} \ w = y^{T} \ p^{T}
by (metis conv-dist-comp conv-involutive conv-star-commute)
also have ... = bot
using 1 5 by (metis (no-types, hide-lams) conv-dist-comp conv-dist-inf
equivalence-top-closed inf-top.right-neutral Schroeder-2 symmetric-bot-closed
path-compression-invariant-def)
finally have 26: y^{T} \ p^{*} \ w = bot
by simp
have (?p \ - 1)^{T} \ p^{*} \ w = (w \ y^{T} \ - 1)^{T} \ p^{*} \ w \ p^{T} \ ?w \ (w \ p \ - 1)^{T}
* p^{*} \ w
by (simp add: comp-inf.mult-right-dist-sup mult-right-dist-sup)
also have ... ≤ (w \ y^{T} \ - 1)^{T} \ p^{*} \ w \ p^{*} \ w
by (meson inf-le1 inf-le2 mult-left-isotone order-trans sup-right-isotone)
also have ... ≤ (w \ y^{T} \ - 1)^{T} \ p^{*} \ w \ p^{*} \ w
using mult-left-isotone star.left-plus-below-circ sup-right-isotone by blast
also have ... ≤ y^{T} \ p^{*} \ w \ p^{*} \ w
by (meson inf-le1 inf-le2 mult-left-isotone order-trans sup-left-isotone)
also have ... = p^{*} \ w
using 26 by simp

finally show \texttt{thesis}
by (metis comp-associative le-supI star.circ-loop-fixpoint sup-ge2 star-left-induct)

qed

finally have \(w \leq p^T \star p^T \star w \)
using 11 25 reachable-without-loops star-plus by auto

thus False
using 1 7 by (metis inf.le-iff-sup le-bot pseudo-complement schroeder-4-p semiring.mult-zero-right star.circ-plus-same path-compression-invariant-def)

qed

have \(\text{card } ?t < \text{card } ?s \)
apply (rule psubset-card-mono)

subgoal using finite-regular by simp
subgoal using 22 23 24 by auto

done
thus \texttt{thesis}
using 1 by simp

qed

lemma \texttt{path-compression-3}:
path-compression-invariant \(p \ x \ y \ p0 \ w \wedge y = p[[w]] \implies \)

path-compression-postcondition \(p \ x \ (p[[w]]) \ p0 \)
using path-compression-invariant-def path-compression-postcondition-def path-compression-precondition-def by auto

theorem \texttt{path-compression}:
VARS \(p \ t \ w \)

\[\text{path-compression-precondition } p \ x \ y \wedge p0 \ = \ p \]

\(w := x; \)

WHILE \(y \neq p[[w]] \)

INV \{ \text{path-compression-invariant } p \ x \ y \ p0 \ w \}

VAR \{ \text{card } \{ z . \text{regular } z \wedge z \leq p^T \star w \} \}

DO \(t := w; \)

\(w := p[[w]]; \)

\(p[t] := y \)

OD

\[\text{path-compression-postcondition } p \ x \ y \ p0 \]

apply vcg-tc-simp
apply (fact path-compression-1)
apply (fact path-compression-2)
by (fact path-compression-3)

lemma \texttt{path-compression-exists}:
path-compression-precondition \(p \ x \ y \implies \exists \ p' . \text{path-compression-postcondition } p' \)
\(x \ y \ p \)
using tc-extract-function path-compression by blast
definition path-compression \(p \) \(x \) \(y \) \(\equiv \) (SOME \(p' \). path-compression-postcondition \(p' \) \(x \) \(y \) \(p \))

lemma path-compression-function:
 assumes path-compression-precondition \(p \) \(x \) \(y \)
 and \(p' = \) path-compression \(p \) \(x \) \(y \)
 shows path-compression-postcondition \(p' \) \(x \) \(y \) \(p \)
by (metis assms path-compression-def path-compression-exists someI)

3.4 Find-set with Path Compression

theorem find-set-path-compression:
 VARS \(p \) \(y \)
 [\ find-set-precondition \(p \) \(x \) \(\land \) \(p0 = p \) \]
 \(y := \) find-set \(p \) \(x \);
 \(p := \) path-compression \(p \) \(x \) \(y \)
 [\ path-compression-postcondition \(p \) \(x \) \(y \) \(p0 \) \]
apply vcg-tc-simp
using find-set-function find-set-postcondition-def find-set-precondition-def path-compression-function path-compression-precondition-def
by fastforce

theorem find-set-path-compression-1:
 VARS \(p \) \(t \) \(w \) \(y \)
 [\ find-set-precondition \(p \) \(x \) \(\land \) \(p0 = p \) \]
 \(y := \) find-set \(p \) \(x \);
 \(w := x \);
 WHILE \(y \neq p[[w]] \]
 INV \{ path-compression-invariant \(p \) \(x \) \(y \) \(p0 \) \(w \) \}
 VAR \{ card \{ z . regular \(z \) \(\land \) \(z \leq p^\tau \ast w \) \} \}
 DO \(t := w \);
 \(w := p[[w]] \);
 \(p[t] := y \)
 OD
 [\ path-compression-postcondition \(p \) \(x \) \(y \) \(p0 \) \]
apply vcg-tc-simp
using find-set-function find-set-postcondition-def find-set-precondition-def path-compression-1 path-compression-precondition-def
apply (fact path-compression-2)
by (fact path-compression-3)

theorem find-set-path-compression-2:
 VARS \(p \) \(y \)
 [\ find-set-precondition \(p \) \(x \) \(\land \) \(p0 = p \) \]
 \(y := x \);
 WHILE \(y \neq p[[y]] \]
 INV \{ find-set-invariant \(p \) \(x \) \(y \) \(p0 = p \) \}
 VAR \{ card \{ z . regular \(z \) \(\land \) \(z \leq p^\tau \ast y \) \} \}
 DO \(y := p[[y]] \)
\[\text{OD; } \]
\[p := \text{path-compression} \quad x \quad y \]
\[\text{[path-compression-postcondition} \quad x \quad y \quad p0 \text{]} \]
\text{apply vcg-tc-simp}
\text{apply (simp add: find-set-1)}
\text{using find-set-2 apply blast}
\text{by (smt find-set-3 find-set-invariant-def find-set-postcondition-def find-set-precondition-def path-compression-function path-compression-precondition-def)}

\text{theorem find-set-path-compression-3:}
\text{VARS} \; p \; t \; w \; y
\text{[find-set-precondition} \quad p \; x \quad p0 \; = \; p \text{]}
\text{y} := \; x;
\text{WHILE} \; y \; \neq \; p[[y]]
\text{INV} \; \{ \text{find-set-invariant} \quad p \; x \; y \; p0 \; = \; p \}
\text{VAR} \; \{ \text{card} \; \{ z \; . \; \text{regular} \quad z \; \leq \; p^{\star} \quad \ast \quad y \; \} \}
\text{DO} \; y := \; p[[y]]
\text{OD;}
\text{w} := \; x;
\text{WHILE} \; y \; \neq \; p[[w]]
\text{INV} \; \{ \text{path-compression-invariant} \quad p \; x \; y \; p0 \; w \}
\text{VAR} \; \{ \text{card} \; \{ z \; . \; \text{regular} \quad z \; \leq \; p^{\star} \quad \ast \quad w \; \} \}
\text{DO} \; t := \; w;
\text{w} := \; p[[w]];
\text{p}[t] := \; y
\text{OD}
\text{[path-compression-postcondition} \quad x \; y \; p0 \;]
\text{apply vcg-tc-simp}
\text{apply (simp add: find-set-1)}
\text{using find-set-2 apply blast}
\text{using find-set-3 find-set-invariant-def find-set-postcondition-def find-set-precondition-def path-compression-invariant-def path-compression-precondition-def apply blast}
\text{apply (fact path-compression-2)}
\text{by (fact path-compression-3)}

\text{lemma find-set-path-compression-exists:}
\text{find-set-precondition} \quad p \; x \; \Longrightarrow \; \exists \; p' \; y \; . \; \text{path-compression-postcondition} \; p' \; x \; y \; p
\text{using tc-extract-function find-set-path-compression by blast}

\text{definition find-set-path-compression} \; p \; x \; \equiv \; (\text{SOME} \; (p',y) \; . \; \text{path-compression-postcondition} \; p' \; x \; y \; p)

\text{lemma find-set-path-compression-function:}
\text{assumes find-set-precondition} \; p \; x
\text{and} \; (p',y) = \text{find-set-path-compression} \; p \; x
\text{shows path-compression-postcondition} \; p' \; x \; y \; p
\text{proof} \; –
let \(P = \lambda (p', y). \) path-compression-postcondition \(p' x y p \)

have \(P \) (SOME \(z \). \(P z \))
 apply (unfold some-eq-ex)
 using assms(1) find-set-path-compression-exists by simp
thus \(\) thesis
 using assms(2) find-set-path-compression-def by auto
qed

3.5 Union-sets

definition union-sets-precondition \(p x y \equiv \) disjoint-set-forest \(p \) \(\land \) point \(x \) \(\land \) point \(y \)
definition union-sets-postcondition \(p x y p0 \equiv \) union-sets-precondition \(p x y \) \(\land \) \(fc p = wcc (p0 \sqcup x \ast y^2) \)

theorem union-sets:
 VARS \(p r s t \)
 \([\) union-sets-precondition \(p x y \land p0 = p \) \(] \)
 \(t \) := find-set-path-compression \(p x \);\n \(p := \) fst \(t \);\n \(r := \) snd \(t \);\n \(t \) := find-set-path-compression \(p y \);\n \(p := \) fst \(t \);\n \(s := \) snd \(t \);\n \(p[r] := s \)
 \([\) union-sets-postcondition \(p x y p0 \) \(] \)
proof vcg-te-simp
 fix \(p \)
 let \(?t1 = \) find-set-path-compression \(p x \)
 let \(?p1 = \) fst \(?t1 \)
 let \(?r = \) snd \(?t1 \)
 let \(?t2 = \) find-set-path-compression \(?p1 y \)
 let \(?p2 = \) fst \(?t2 \)
 let \(?s = \) snd \(?t2 \)
 let \(?p = \) \(?p2[?r\mapsto?s]\)
assume 1: union-sets-precondition \(p x y \land p0 = p \)
show union-sets-postcondition \(?p x y p \)
proof (unfold union-sets-postcondition-def union-sets-precondition-def, intro conjI)
 have path-compression-postcondition \(?p1 x ?r p \)
 using 1 by (simp add: find-set-precondition-def union-sets-precondition-def find-set-path-compression-function)
 hence 2: disjoint-set-forest \(?p1 \land \) point \(?r \land ?r = \) root \(?p1 x \land \) \(?p1 \sqcap 1 = p \)
 \(\sqcap 1 \land \) \(fc \) \(?p1 = fc p \)
 using path-compression-precondition-def path-compression-postcondition-def
by auto
 hence path-compression-postcondition \(?p2 y ?s ?p1 \)
 using 1 by (simp add: find-set-precondition-def union-sets-precondition-def find-set-path-compression-function)
hence 3: disjoint-set-forest \(?p2 \land \text{point} ?s \land ?s = \text{root} ?p2 y \land ?p2 \cap 1 = ?p1 \cap 1 \land fc ?p2 = fc ?p1 \)

using path-compression-precondition-def path-compression-postcondition-def

by auto

hence 4: fc ?p2 = fc p

using 2 by simp

show 5: univalent ?p

using 2 3 update-univalent by blast

show total ?p

using 2 3 bijective-regular update-total by blast

show acyclic (?p \cap -1)

proof (cases ?r = ?s)

case True

thus \(?\text{thesis}\)

using 3 update-acyclic-3 by fastforce

next

case False

hence bot = ?r \cap ?s

using 2 3 distinct-points by blast

also have ... = ?r \cap \?p2T* * ?s

using 3 root-transitive-successor-loop by force

finally have ?s \cap \?p2* * ?r = bot

using Schroeder-1 conv-star-commute inf.sup-monoid.add-commute by

fastforce

thus \(?\text{thesis}\)

using 2 3 update-acyclic-2 by blast

qed

show vector x

using 1 by (simp add: union-sets-precondition-def)

show injective x

using 1 by (simp add: union-sets-precondition-def)

show surjective x

using 1 by (simp add: union-sets-precondition-def)

show vector y

using 1 by (simp add: union-sets-precondition-def)

show injective y

using 1 by (simp add: union-sets-precondition-def)

show surjective y

using 1 by (simp add: union-sets-precondition-def)

show fc ?p = wcc (p \sqcup x * y^T)

proof (rule antisym)

have \(?r = ?pI[?r]\)

using 2 root-successor-loop by force

hence \(?r \ast ?r^T \leq ?pI^T\)

using 2 eq-refl shunt-bijective by blast

hence \(?r \ast ?r^T \leq ?pI\)

using 2 conv-order coreflexive-symmetric by fastforce

hence \(?r \ast ?r^T \leq ?pI \cap 1\)

using 2 inf.boundedI by blast
also have \(\ast \leq \top \cap \bot \)
using 3 by simp
finally have \(\bot \ast \ast \leq \top \)
by simp
hence \(\bot \leq \top \ast \ast \)
using 2 shunt-bijective by blast
hence 6: \(\top \leq \bot \ast \ast \)
by (simp add: mult-assoc)
also have \(\ast \leq \bot \ast \ast \)
by (simp add: conv-order mult-right-isotone)
proof –
also have \(\ast \leq \top \leq \bot \ast \ast \)
proof
finally have \(\ast \leq \top \)
by force
have \(\bot \leq \bot \ast \ast \ast \)
using 2 by simp
hence 10: \(\bot \ast \ast \ast \leq \bot \ast \ast \ast \)
using 1 shunt-bijective union-sets-precondition-def by blast
hence \(x \ast \ast \ast \leq \bot \ast \ast \ast \)
using conv-dist-comp conv-order conv-star-commute by force
also have \(\ast \leq \top \)
by (simp add: star.circ-sub-dist)
also have \(\ast \leq \top \)
using 2 3 by (simp add: fc-wcc)
q.e.d.
also have ... ≤ wcc ?p
 using 8 by simp
finally have 11: x * ?rT ≤ wcc ?p
 by simp
have 12: ?r * ?sT ≤ wcc ?p
 using 2 3 star, circ-sub-dist-1 sup-assoc vector-covector by auto
have ?s ≤ ?p2T * * y
 using 3 by simp
hence 13: ?s * yT ≤ ?p2T *
 using 1 shunt-bijective union-sets-precondition-def by blast
also have ... ≤ wcc ?p2
 using star-isotone sup-ge2 by blast
also have ... ≤ wcc ?p
 using 8 by simp
finally have 14: ?s * yT ≤ wcc ?p
 by simp
have x ≤ x * ?rT * ?r ∧ y ≤ y * ?sT * ?s
 using 2 3 shunt-bijective by blast
hence x * yT ≤ x * ?rT * ?r * (y * ?sT * ?s)T
 using comp-isotone conv-isotone by blast
also have ... = x * ?rT * ?r * ?sT * ?s * yT
 by (simp add: comp-associative conv-dist-comp)
also have ... ≤ wcc ?p * (?r * ?sT) * (?s * yT)
 using 11 by (metis mult-left-isotone mult-assoc)
also have ... ≤ wcc ?p * wcc ?p * (?s * yT)
 using 12 by (metis mult-left-isotone mult-right-isotone)
also have ... ≤ wcc ?p * wcc ?p * wcc ?p
 using 14 by (metis mult-right-isotone)
also have ... = wcc ?p
 by (simp add: star, circ-transitive-equal)
finally have p ⊔ x * yT ≤ wcc ?p
 using 9 by simp
hence wcc (p ⊔ x * yT) ≤ wcc ?p
 using wcc-below-wcc by simp
thus wcc (p ⊔ x * yT) ≤ fc ?p
 using 5 fc-wcc by simp
have − ?r ⊔ ?p2 ≤ wcc ?p2
 by (simp add: inf, coboundedII2 star, circ-sub-dist-1)
also have ... = wcc p
 using 4 by (simp add: star-decompose-1)
also have ... ≤ wcc (p ⊔ x * yT)
 by (simp add: wcc-isotone)
finally have 15: − ?r ⊔ ?p2 ≤ wcc (p ⊔ x * yT)
 by simp
have ?r * xT ≤ wcc ?p1
 using 10 inf, order-trans star, circ-sub-dist sup-commute by fastforce
also have ... = wcc p
 using 2 by (simp add: star-decompose-1)
also have ... ≤ wcc (p ⊔ x * yT)
by (simp add: wcc-isotone)
finally have 16: ?r * x^T ≤ wcc (p ⊔ x * y^T)
 by simp
have 17: x * y^T ≤ wcc (p ⊔ x * y^T)
 using le-supE star.circ-sub-dist-1 by blast
have y * ?s^T ≤ ?p2^*
 using 13 conv-dist-comp conv-order conv-star-commute by fastforce
also have ... ≤ wcc ?p2
 using star.circ-sub-dist sap-commute by fastforce
also have ... = wcc p
 using 4 by (simp add: star-decompose-1)
also have ... ≤ wcc (p ⊔ x * y^T)
 by (simp add: wcc-isotone)
finally have 18: y * ?s^T ≤ wcc (p ⊔ x * y^T)
 by simp
have ?r ≤ ?r * x^T * x ∧ ?s ≤ ?s * y^T * y
 using 1 shunt-bijective union-sets-precondition-def by blast
hence ?r * ?s^T ≤ ?r * x^T * x * (?s * y^T * y)^T
 using comp-isotone conv-isotone by blast
also have ... = ?r * x^T * x * y^T * y * ?s^T
 by (simp add: comp-associative conv-dist-comp)
also have ... ≤ wcc (p ⊔ x * y^T) * (x * y^T) * (y * ?s^T)
 using 16 by (metis mult-left-isotone mult-assoc)
also have ... ≤ wcc (p ⊔ x * y^T) * wcc (p ⊔ x * y^T) * (y * ?s^T)
 using 17 by (metis mult-left-isotone mult-right-isotone)
also have ... ≤ wcc (p ⊔ x * y^T) * wcc (p ⊔ x * y^T) * wcc (p ⊔ x * y^T)
 using 18 by (metis mult-right-isotone)
also have ... = wcc (p ⊔ x * y^T)
 by (simp add: star.circ-transitive-equal)
finally have ?p ≤ wcc (p ⊔ x * y^T)
 using 2 3 15 vector-covector by auto
hence wcc ?p ≤ wcc (p ⊔ x * y^T)
 using wcc-below-wcc by blast
thus fc ?p ≤ wcc (p ⊔ x * y^T)
 using 5 fc-wcc by simp
qed
qed
qed

lemma union-sets-exists:
union-sets-precondition p x y =⇒ ∃ p', union-sets-postcondition p' x y p
using tc-extract-function union-sets by blast

definition union-sets p x y ≡ (SOME p'. union-sets-postcondition p' x y p)

lemma union-sets-function:
assumes union-sets-precondition p x y
 and p' = union-sets p x y
shows union-sets-postcondition p' x y p

35
by (metis assms union-sets-def union-sets-exists someI)

end

end