
Conference Report: PROFES2005

Tony Dale

June 28, 2005

General

PROFES2005 is an international conference on product-focused software process improvement.
There were about 120 participants. Each paper submitted was reviewed by three reviewers, with
41 out of 67 papers accepted. The conference proceedings are published by Springer [1].

PROFES is an industry/academic conference, but compared to NZ the industry people were
very highly qualified; I was struck by the apparent ease with which European IT professionals can
move back and forth between industry and academia.

The conference was held in the IT Dept of Oulu University, Finland. This is a sleek, modern
and colour-matched facility. The conference organization was excellent, my only criticism being
that I wish they had posted the “PROFES2005 Survival Guide” on the website a few weeks ago.
The location and scheduling information in this little presentation would have helped me a lot on
the first day of the conference—conference organisers take note!

Papers

Papers were presented in 20–minute slots. Most of the presentations garnered only one or two
questions, and that was often from the session chair. Generally, there was little interaction with
the audience. The quality of most presentations was good, although English as a second language
hampered one or two. The most annoying aspect was that quite a few presenters really needed
a laser pointer, but didn’t have one. Here is a synopsis and a few opinions about the sessions I
attended:

Tuesday, June 14th

Keynote: Competitive Product Engineering: 10 Powerful Principles for winning
product leadership, through advanced systems engineering, compared to 10 failure
paths still popular in current culture

Tom Gilb.
This keynote was entertaining and provocative rather than thought–provoking. Tom has gotten

together a bunch of well–known agile Software Engineering techniques, claimed them as his own
and christened them “EVO Software Engineering”. While Tom is correct when he says that
modern Software Engineering techniques are poorly used by industry, it doesn’t follow that you
could throw them all away and do no worse than at present. There were a few sweeping statements
like that in this talk. Another one was: “even a bad metric is better than no metric”, which might
be controversial.

Many of the presenters subsequently referred to Tom in their presentations, so he made an
impact.

1



A Qualitative Methodology for Tailoring SPE Activities in Embedded Platform De-
velopment

Enrico Johansson, Josef Nedstam, Fredrik Wartenberg, Martin Host
A worthwhile approach to tailoring software engineering processes for local requirements, using

performance metrics (mostly response–time based) to optimize. Validation and evaluation of the
model is done throughout the tailoring cycle.

A Rendezvous of Content Adaptable Service and Product Line Modeling

Seo Jeong Lee, Soo Dong Kim
Academically the weakest presentation I saw, this work appeared to be at an early stage of

development. The aim was to create a framework for more effective, flexible and reusable software
services, but how they did this wasn’t well explained in either the presentation or the paper. An
example would have made more sense of it—and showed the approach could work.

A Framework for Linking Projects and Project Management Methods

Tony Dale, Neville Churcher, Warwick Irwin
My reason for being there. After my presentation, one or two people sought me out to argue

with me, or pick my brains.

A Meta-model for Requirements Engineering in System Family Context for Software
Process Improvement using CMMI

Rodrigo Ceron, Juan C. Duenas, Enrique Serrano, Rafael Capilla
A worthwhile approach to requirements engineering, with an implementation (an Eclipse plu-

gin). The approach boils down to a complicated meta–model for requirements documentation,
relying on use–cases.

Framework for Integrating Usability Practices into the Software Process

Xavier Ferre, Natalia Juristo, Ana M. Moreno
HCI meets Software Engineering processes. The authors selected 35 HCI techniques from 94

they evaluated, for applicability to Software Engineering. There is an implementation of their
approach on the web. Interviews with developers who had used their approach were supportive—
the developers knew whether what they were doing had HCI implications.

Issues in Software Inspection Practices

Sami Kollanus
Software inspection (ie: desk checks) is acknowledged as important, but is often little–used or

badly used. An interview–based case study of two organizations, it was found that organization
size, problem size and inspection maturity affected the amount of code inspection.

Risk-based Trade-off between Verification and Validation—An Industry-motivated
Study

Kennet Henningsson, Claes Wohlin
This approach used two factors: the amount of coupling between classes and the familiarity

of the required functionality, to create recommendations for tailoring Verification and Validation
in software engineering processes. A case study used structured interviews for evaluation, and it
was found that resource utilization improves by adapting the Software Engineering process in this
way.

2



Investigating the Impact of Active Guidance on Design Inspection

Dietmar Winkler, Stefan Biffl, Bettina Thurnher
Desk checks again. These might be done in an ad–hoc way, or using checklists which might be

generic or tailored to the application, or using desk checks based on the use–cases on which the
code was based. Tailored checklists and use–cases are “active guidance”. A study was made of 127
Software Engineering students, and usage–based inspections were found to be the most effective
(total number of defects found) and efficient (defects found per hour).

Wednesday, June 15th

Keynote: From products and solutions to end-user experiences

Ari Virtanen
A good marketing presentation (they do exist!). Apparently mobile phones are in a transition

from technical, feature–based marketing to benefit–based marketing which takes in the whole
product cycle, from initial purchase through service and eventual replacement. The idea is that
users can be made to buy, and even pay a premium for, a technically second–rate product—think
Harley–Davidson motorcycles.

Mega Software Engineering

Katsuro Inoue, Pankaj K. Garg, Hajimu Iida, Kenichi Matsumoto, Koji Torii
A new concept but not new technology. This is a low stress/low burden approach (for program-

mers and managers) to collecting information about a software project and, for example, applying
data mining (eg: latent semantic analysis) to it. In this way, individual knowledge can be easily
shared with a community of developers. See www.empirical.jp and www.zeesource.net.

Software Development and Experimentation in an Academic Environment: The Gaudi
Experience

Ralph-Johan Back, Luka Milovanov, Ivan Porres
Gaudi is a student–staffed software factory which operates over the 3–month summer breaks.

Students apply to work in the Gaudi factory, and the good ones are selected. The software projects
may be software for researchers, or actual software experiments; the clients are departmental or
University clients, but industry collaboration is a possibility. A modified Extreme Programming
methodology is used. Projects are typically 1-2 person–years, or 4–6 students for 3–6 months;
larger projects are broken down to this size. Apparently, having nice surroundings makes a no-
ticeable difference to the smooth functioning of projects.

Evaluation of Three Methods to Predict Project Success: A Case Study

Claes Wohlin, Anneliese Amschler Andrews
This study examined data from the the NASA Software Engineering Lab, and used a statistical

approach to examine whether three different methods could predict project success. A sliding
window of projects was examined: the history of 20 projects was used to predict the next five.
Of the three methods, the “critical success factors” approach showed significant ability to predict
project failure—ie: there were “critical failure factors”. The number of factors changed over time:
there were nine, then 2, then 4.

An XP Experiment with Students Setup and Problems

Thomas Flohr, Thorsten Schneider
This was a study of groups of students which aimed to determine whether test–driven coding

was better/faster than a code–then–test approach. The intention was to use an industry–like
environment, but with students, who are cheaper to experiment on than professionals. Some of

3



the difficulties encountered were that all the students were in the same room, so could plagiarize
each others work, and the difficulty of finding a good test task. The experiment concluded that
test–driven coding was faster, with better coverage of the software being tested.

Views from an Organization on how Agile Development Affects its Collaboration with
a Software Development Team

Harald Svensson, Martin Host
Extreme Programming has an ideal scenario, but in reality you often have such factors as a

large software development group, maintenance of legacy systems, etc. This was a case study of the
introduction of Extreme Programming into an organization, but while most XP studies have been
of programming teams, this study attempting to get the viewpoint of the rest of the organization.
The results were that while XP didn’t affect organization/developer communication, the developer
team gave better answers to the organization, and was perceived as being more competent, so
that the organization trusted the developers more. The presentation concluded with some “agile”
advice:

• The introduction of a new process like this must be supported by top management. It’s also
essential to address the concerns of people who oppose the changes.

• Present results of the introduction of the new process early and often. This increases curiosity
about and awareness of the exercise.

Adapting PROFES for Use in an Agile Process: An Industry Experience Report

Andreas Jedlitschka, Dirk Hamann, Thomas Gohlert, Astrid Schroder
PROFES is a big software engineering method a bit like the Rational Process. This was an

attempt to make PROFES more “agile”. It was found that the short iterations of agile methods
don’t allow much time for the time–consuming PROFES process—so don’t do that, then! The
solution is only to use the heavyweight parts of PROFES when really necessary and the costs are
justified.

Agile Hour: Teaching XP skills to Students and IT Professionals

Daniel Lubke, Kurt Schneider
What a great idea! This approach teaches Extreme Programming skills with a lecture, then a

one–hour lab. Instead of teaching XP with the distraction of programming, the project is imple-
mented with Lego—originally the project was drawing, but drawings are too loosely constrained
compared with Lego. A similar approach was tried with IT Professionals, and the results were
rather different than with students: the professionals tended to argue about the “contract”, and
pair groups tended to expand to a team/talkfest.

Panel Discussion: Incremental project management in busi-
ness sense: How to manage incremental software develop-
ment in dynamic a environment

In this session, four panelists, Tom Gilb (Consultant), Marek Leszak (Lucent), Otto Vitner (Delta
Consultants) and Rob Kommeren (Philips) gave their takes on this problem.

Tom and Otto’s talk were non-specific advice (ie: what you should do in this situation) but the
other two related experiences from their companies (what they did do in this situation). In the
latter cases, one or even several highly tailored project management methods had been adapted
from, for example: the Spiral software development method.

By comparison, the consultants came up with rules of thumb, saying you should make each
project iteration 2% of the total project timeline or budget, or that agile method-based projects

4



typically need the architecture rewritten after three or four iterations. The company people pointed
out that they have such real-world constraints as 12-month lead times for product planning, and
the consultants responded along the lines of ”you have to think outside the box”.

All very interesting, and a stimulating end to the conference, but we should bear in mind that
the majority of software developers are at the lowest level of the CMMI model, and can’t begin
to deal with the process concepts addressed in this conference.

References

[1] A Dale, N Churcher, and W Irwin. A Framework for Linking Projects and Project Management
Methods. In Frank Bomarius and Seija Komi-Sirvio, editors, PROFES2005, volume 3547/2005,
pages 84–97, http://profes2005.oulu.fi/, June 14-15 2005. Springer.

5


